समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
कोई हल नहीं हैं।
ठीक एक हल है।
ठीक दो हल हैं।
ठीक चार हल हैं।
यदि समीकरण ${x^3} - 9{x^2} + 14x + 24 = 0$ के दो मूलों का अनुपात $3 : 2$ हो तो मूल होंगे
समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे
समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$
$\lambda $ के किस मान के लिये समीकरण ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ के मूलों के वर्गो का योग न्यूनतम होगा
यदि $\alpha$ तथा $\beta$, समीकरण $x ^{2}+(3)^{1 / 4} x +3^{1 / 2}=0$ के दो भिन्न मूल हैं, तो $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ का मान बराबर है